Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Genes (Basel) ; 14(1)2023 Jan 16.
Article in English | MEDLINE | ID: covidwho-2199966

ABSTRACT

Background: Due to the extreme infectivity of SARS-CoV-2, sample-to-answer SARS-CoV-2 reverse transcription (RT) polymerase chain reaction (PCR) assays are urgently needed in order to facilitate infectious disease surveillance and control. The purpose of this study was to evaluate three sample-to-answer SARS-CoV-2 RT-PCR assays­BioFire COVID-19 Test, BioFire RP 2.1, and Cepheid Xpert Xpress SARS-CoV-2­using clinical samples. Methods: A total of 77 leftover nasopharyngeal swab (NP) swabs (36 positives and 41 negatives) confirmed by reference SARS-CoV-2 RT real-time (q) PCR assay were collected. The clinical sample concordance, as specified by their respective emergency use authorizations (EUAs), in comparison to the reference SARS-CoV-2 RT-qPCR assay, was assessed. Results: The results showed that all three sample-to-answer SARS-CoV-2 RT-PCR assays provided perfectly concordant results consistent with the reference SARS-CoV-2 RT-qPCR assay. The BioFire COVID-19 Test exhibited the best turnaround time (TAT) compared to the other assays, regardless of the test results, using one-way analysis of variance followed by Scheffe's post hoc test (p < 0.001). The Xpert Xpress SARS-CoV-2 showed a shorter average TAT (mean ± standard deviation, 49.9 ± 3.1 min) in the positive samples compared to that (55.7 ± 2.5 min) of the negative samples. Conclusions: Our evaluation demonstrates that the BioFire COVID-19 Test, BioFire RP 2.1, and Cepheid Xpert Xpress SARS-CoV-2 assays compare favorably to the reference SARS-CoV-2 RT-qPCR assay, along with a 100% concordance in assay results for clinical samples and an acceptable analytical performance at their guaranteed limits of detection. The addition of a widely used simultaneous sample-to-answer SARS-CoV-2 RT-PCR assay will contribute to the number of medical laboratories able to test for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Clinical Laboratory Techniques/methods , COVID-19 Testing , Nasopharynx , Sensitivity and Specificity
2.
Computers and Electrical Engineering ; 105:108548, 2023.
Article in English | ScienceDirect | ID: covidwho-2158667

ABSTRACT

After the COVID-19 pandemic, cyberattacks are increasing as non-face-to-face environments such as telecommuting and telemedicine proliferate. Cyberattackers exploit vulnerabilities in remote systems and endpoint devices in major enterprises and infrastructures. To counter these attacks, fast detection and response are essential because advanced persistent threat (APT) attacks intelligently infiltrate endpoint devices for long periods and spread to large-scale environments. However, because conventional security systems are signature-based, fast detection of APT attacks is challenging, and it is difficult to respond flexibly to the environment. In this study, we propose an APT fast detection and response technique using open-source tools that improves the efficiency of existing endpoint information protection systems and swiftly detects the APT attack process. Performance test results based on realistic scenarios using the open-source APT attack library and MITER ATT&CK indicated that fast detection was possible with higher accuracy for the early stages of APT attacks in scenarios where endpoint attack detectors are interworking environments.

3.
Ann Lab Med ; 43(2): 137-144, 2023 03 01.
Article in English | MEDLINE | ID: covidwho-2089751

ABSTRACT

While the coronavirus disease 2019 pandemic is ongoing, monkeypox has been rapidly spreading in non-endemic countries since May 2022. Accurate and rapid laboratory tests are essential for identifying and controlling monkeypox. Korean Society for Laboratory Medicine and the Korea Disease Prevention and Control Agency have proposed guidelines for diagnosing monkeypox in clinical laboratories in Korea. These guidelines cover the type of tests, selection of specimens, collection of specimens, diagnostic methods, interpretation of test results, and biosafety. Molecular tests are recommended as confirmatory tests. Skin lesion specimens are recommended for testing in the symptomatic stage, and the collection of both blood and oropharyngeal swabs is recommended in the presymptomatic or prodromal stage.


Subject(s)
COVID-19 , Monkeypox , Humans , Monkeypox/diagnosis , COVID-19/diagnosis , Clinical Laboratory Techniques , Pandemics , Republic of Korea
5.
Virulence ; 13(1): 1242-1251, 2022 12.
Article in English | MEDLINE | ID: covidwho-1956537

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern have been emerging. However, knowledge of temporal and spatial dynamics of SARS-CoV-2 is limited. This study characterized SARS-CoV-2 evolution in immunosuppressed patients with long-term SARS-CoV-2 shedding for 73-250 days, without specific treatment. We conducted whole-genome sequencing of 27 serial samples, including 26 serial samples collected from various anatomic sites of two patients and the first positive sample from patient 2's mother. We analysed the intrahost temporal dynamics and genomic diversity of the viral population within different sample types. Intrahost variants emerging during infection showed diversity between individual hosts. Remarkably, N501Y, P681R, and E484K, key substitutions within spike protein, emerged in vivo during infection and became the dominant population. P681R, which had not yet been detected in the publicly available genome in Korea, appeared within patient 1 during infection. Mutually exclusive substitutions at residues R346 (R346S and R346I) and E484 (E484K and E484A) of spike protein and continuous turnover of these substitutions occurred. Unique genetic changes were observed in urine samples. A household transmission from patient 2 to his mother, at least 38 days after the diagnosis, was characterized. Viruses may differently mutate and adjust to the host selective pressure, which could enable the virus to replicate efficiently for fitness in each host. Intrahost variants could be candidate variants likely to spread to the population eventually. Our findings may provide new insights into the dynamics of SARS-CoV-2 in response to interactions between the virus and host.


Subject(s)
COVID-19 , Immunocompromised Host , SARS-CoV-2 , Virus Shedding , COVID-19/transmission , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Whole Genome Sequencing
6.
Ann Lab Med ; 42(4): 391-397, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1917192

ABSTRACT

Korean Society for Laboratory Medicine and the Korea Disease Prevention and Control Agency have announced guidelines for diagnosing coronavirus disease (COVID-19) in clinical laboratories in Korea. With the ongoing pandemic, we propose an update of the previous guidelines based on new scientific data. This update includes recommendations for tests that were not included in the previous guidelines, including the rapid molecular test, antigen test, antibody test, and self-collected specimens, and a revision of the previous recommendations. This update will aid clinical laboratories in performing laboratory tests for diagnosing COVID-19.


Subject(s)
COVID-19 , Clinical Laboratory Techniques , Humans , Pandemics , SARS-CoV-2 , Specimen Handling
7.
J Med Virol ; 94(9): 4181-4192, 2022 09.
Article in English | MEDLINE | ID: covidwho-1844141

ABSTRACT

Cleavage of the severe respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein has been demonstrated to contribute to viral-cell fusion and syncytia formation. Studies have shown that variants of concern (VOC) and variants of interest (VOI) show differing membrane fusion capacity. Mutations near cleavage motifs, such as the S1/S2 and S2' sites, may alter interactions with host proteases and, thus, the potential for fusion. The biochemical basis for the differences in interactions with host proteases for the VOC/VOI spike proteins has not yet been explored. Using sequence and structure-based bioinformatics, mutations near the VOC/VOI spike protein cleavage sites were inspected for their structural effects. All mutations found at the S1/S2 sites were predicted to increase affinity to the furin protease but not TMPRSS2. Mutations at the spike residue P681 in several strains, such P681R in the Delta strain, resulted in the disruption of a proline-directed kinase phosphorylation motif at the S1/S2 site, which may lessen the impact of phosphorylation for these variants. However, the unique N679K mutation in the Omicron strain was found to increase the propensity for O-linked glycosylation at the S1/S2 cleavage site, which may prevent recognition by proteases. Such glycosylation in the Omicron strain may hinder entry at the cell surface and, thus, decrease syncytia formation and induce cell entry through the endocytic pathway as has been shown in previous studies. Further experimental work is needed to confirm the effect of mutations and posttranslational modifications on SARS-CoV-2 spike protein cleavage sites.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Glycosylation , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
8.
Nutrients ; 13(12)2021 Dec 16.
Article in English | MEDLINE | ID: covidwho-1580557

ABSTRACT

The excessive synthesis of interleukin-6 (IL-6) is related to cytokine storm in COVID-19 patients. Moreover, blocking IL-6 has been suggested as a treatment strategy for inflammatory diseases such as sepsis. Sepsis is a severe systemic inflammatory response syndrome with high mortality. In the present study, we investigated the anti-inflammatory and anti-septic effects and the underlying mechanisms of Dracocephalum moldavica ethanol extract (DMEE) on lipopolysaccharide (LPS)-induced inflammatory stimulation in RAW 264.7 macrophages along with septic mouse models. We found that DMEE suppressed the release of inflammatory mediators NO and PGE2 and inhibited both the mRNA and protein expression levels of iNOS and COX-2, respectively. In addition, DMEE reduced the release of proinflammatory cytokines, mainly IL-6 and IL-1ß, in RAW 264.7 cells by inhibiting the phosphorylation of JNK, ERK and p65. Furthermore, treatment with DMEE increased the survival rate and decreased the level of IL-6 in plasma in LPS-induced septic shock mice. Our findings suggest that DMEE elicits an anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophages and an anti-septic effect on septic mouse model through the inhibition of the ERK/JNK/NF-κB signaling cascades and production of IL-6.


Subject(s)
Interleukin-6/metabolism , Lamiaceae/chemistry , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Plant Extracts/pharmacology , Transcription Factor RelA/metabolism , Animals , Ethanol/chemistry , Extracellular Signal-Regulated MAP Kinases/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , MAP Kinase Kinase 4/metabolism , Male , Mice , Plant Extracts/chemistry , RAW 264.7 Cells
9.
Legal Studies ; 41(4):617-632, 2021.
Article in English | ProQuest Central | ID: covidwho-1514374

ABSTRACT

The European Court of Human Rights (the Court) has been invoking the vulnerability criterion to overcome the drawbacks of cases concerning Article 14 of the European Convention on Human Rights, the prohibition of discrimination. This new criterion, allowing the Court to favour the applicants, highlights the applicants’ group affiliation. However, whether this criterion is effective in protecting vulnerable applicants against discrimination is doubtful. To examine this, I divide the Court's approach to Article 14 before and after the application of the vulnerability criterion. I argue that vulnerability criterion was used to fix the drawbacks of Article 14, but eventually backfired. The concept of vulnerability has been ambiguous, inconsistently used by the Court, and paternalistic. I suggest the Court focus on individual autonomy rather than grouping the applicants to improve their legal reasoning of Article 14.

10.
Yonsei Med J ; 62(10): 911-917, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1438409

ABSTRACT

PURPOSE: The coronavirus disease 2019 (COVID-19) pandemic disrupted the emergency medical care system worldwide. We analyzed the changes in the management of intracerebral hemorrhage (ICH) and compared the pre-COVID-19 and COVID-19 eras. MATERIALS AND METHODS: From March to October of the COVID-19 era (2020), 83 consecutive patients with ICH were admitted to four comprehensive stroke centers. We retrospectively reviewed the data of patients and compared the treatment workflow metrics, treatment modalities, and clinical outcomes with the patients admitted during the same period of pre-COVID-19 era (2017-2019). RESULTS: Three hundred thirty-eight patients (83 in COVID-19 era and 255 in pre-COVID-19 era) were included in this study. Symptom onset/detection-to-door time [COVID-19; 56.0 min (34.0-106.0), pre-COVID-19; 40.0 min (27.0-98.0), p=0.016] and median door to-intensive treatment time differed between the two groups [COVID-19; 349.0 min (177.0-560.0), pre-COVID-19; 184.0 min (134.0-271.0), p<0.001]. Hematoma expansion was detected more significantly in the COVID-19 era (39.8% vs. 22.1%, p=0.002). At 3-month follow-up, clinical outcomes of patients were worse in the COVID-19 era (Good modified Rankin Scale; 33.7% in COVID19, 46.7% in pre-COVID-19, p=0.039). CONCLUSION: During the COVID-19 era, delays in management of ICH was associated with hematoma expansion and worse outcomes.


Subject(s)
COVID-19 , Cerebral Hemorrhage/epidemiology , Cerebral Hemorrhage/therapy , Hematoma/epidemiology , Hematoma/therapy , Humans , Retrospective Studies , SARS-CoV-2
12.
Ann Lab Med ; 42(1): 96-99, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1350249

ABSTRACT

The sensitivity of molecular diagnostics could be affected by nucleotide variants in pathogen genes, and the sites affected by such variants should be monitored. We report a single-nucleotide variant (SNV) in the nucleocapsid (N) gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), i.e., G29179T, which impairs the diagnostic sensitivity of the Xpert Xpress SARS-CoV-2 assay (Cepheid, Sunnyvale, CA, USA). We observed significant differences between the threshold cycle (Ct) values for envelope (E) and N genes and confirmed the SNV as the cause of the differences using Sanger sequencing. This SNV, G29179T, is the most prevalent in Korea and is associated with the B.1.497 virus lineage, which is dominant in Korea. Clinical laboratories should be aware of the various SNVs in the SARS-CoV-2 genome and consider their potential effects on the diagnosis of coronavirus disease 2019.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Diagnostic Techniques , Nasopharynx , Nucleotides , Prevalence , Republic of Korea , Sensitivity and Specificity
13.
Cancer Cell ; 39(8): 1081-1090.e2, 2021 08 09.
Article in English | MEDLINE | ID: covidwho-1343145

ABSTRACT

As COVID-19 adversely affects patients with cancer, prophylactic strategies are critically needed. Using a validated antibody assay against SARS-CoV-2 spike protein, we determined a high seroconversion rate (94%) in 200 patients with cancer in New York City that had received full dosing with one of the FDA-approved COVID-19 vaccines. On comparison with solid tumors (98%), a significantly lower rate of seroconversion was observed in patients with hematologic malignancies (85%), particularly recipients following highly immunosuppressive therapies such as anti-CD20 therapies (70%) and stem cell transplantation (73%). Patients receiving immune checkpoint inhibitor therapy (97%) or hormonal therapies (100%) demonstrated high seroconversion post vaccination. Patients with prior COVID-19 infection demonstrated higher anti-spike IgG titers post vaccination. Relatively lower IgG titers were observed following vaccination with the adenoviral than with mRNA-based vaccines. These data demonstrate generally high immunogenicity of COVID-19 vaccination in oncology patients and identify immunosuppressed cohorts that need novel vaccination or passive immunization strategies.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/complications , COVID-19/immunology , Neoplasms/complications , Neoplasms/immunology , SARS-CoV-2/immunology , Seroconversion , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Female , Host-Pathogen Interactions/immunology , Humans , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Neoplasms/epidemiology , Neoplasms/therapy , Public Health Surveillance , Risk Factors , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology , Vaccination
14.
Ann Lab Med ; 41(6): 588-592, 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1264322

ABSTRACT

The rapid antigen test (RAT) for coronavirus disease (COVID-19) represents a potent diagnostic method in situations of limited molecular testing resources. However, considerable performance variance has been reported with the RAT. We evaluated the clinical performance of Standard Q COVID-19 RAT (SQ-RAT; SD Biosensor, Suwon, Korea), the first RAT approved by the Korean Ministry of Food and Drug Safety. In total, 680 nasopharyngeal swabs previously tested using real-time reverse-transcription PCR (rRT-PCR) were retested using SQ-RAT. The clinical sensitivity of SQ-RAT relative to that of rRT-PCR was 28.7% for all specimens and was 81.4% for specimens with RNA-dependent RNA polymerase gene (RdRp) threshold cycle (Ct) values ≤23.37, which is the limit of detection of SQ-RAT. The specificity was 100%. The clinical sensitivity of SQ-RAT for COVID-19 diagnosis was assessed based on the Ct distribution at diagnosis of 33,294 COVID-19 cases in Korea extracted from the laboratory surveillance system of Korean Society for Laboratory Medicine. The clinical sensitivity of SQ-RAT for COVID-19 diagnosis in the Korean population was 41.8%. Considering the molecular testing capacity in Korea, use of the RAT for COVID-19 diagnosis appears to be limited.


Subject(s)
COVID-19/diagnosis , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Testing/methods , Humans , Nasopharynx/virology , RNA, Viral/analysis , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , Republic of Korea , SARS-CoV-2/isolation & purification
15.
Proteomics ; 21(11-12): e2000278, 2021 06.
Article in English | MEDLINE | ID: covidwho-1212777

ABSTRACT

In managing patients with coronavirus disease 2019 (COVID-19), early identification of those at high risk and real-time monitoring of disease progression to severe COVID-19 is a major challenge. We aimed to identify potential early prognostic protein markers and to expand understanding of proteome dynamics during clinical progression of the disease. We performed in-depth proteome profiling on 137 sera, longitudinally collected from 25 patients with COVID-19 (non-severe patients, n = 13; patients who progressed to severe COVID-19, n = 12). We identified 11 potential biomarkers, including the novel markers IGLV3-19 and BNC2, as early potential prognostic indicators of severe COVID-19. These potential biomarkers are mainly involved in biological processes associated with humoral immune response, interferon signalling, acute phase response, lipid metabolism, and platelet degranulation. We further revealed that the longitudinal changes of 40 proteins persistently increased or decreased as the disease progressed to severe COVID-19. These 40 potential biomarkers could effectively reflect the clinical progression of the disease. Our findings provide some new insights into host response to SARS-CoV-2 infection, which are valuable for understanding of COVID-19 disease progression. This study also identified potential biomarkers that could be further validated, which may support better predicting and monitoring progression to severe COVID-19.


Subject(s)
COVID-19 , Host-Pathogen Interactions/genetics , Proteome , Transcriptome/genetics , Aged , Biomarkers/blood , COVID-19/diagnosis , COVID-19/genetics , COVID-19/metabolism , Disease Progression , Female , Gene Expression Profiling , Humans , Longitudinal Studies , Male , Middle Aged , Prognosis , Proteome/analysis , Proteome/genetics , Proteome/metabolism , Proteomics
17.
J Korean Med Sci ; 35(7): e86, 2020 Feb 24.
Article in English | MEDLINE | ID: covidwho-1110268

ABSTRACT

As of February 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak started in China in December 2019 has been spreading in many countries in the world. With the numbers of confirmed cases are increasing, information on the epidemiologic investigation and clinical manifestation have been accumulated. However, data on viral load kinetics in confirmed cases are lacking. Here, we present the viral load kinetics of the first two confirmed patients with mild to moderate illnesses in Korea in whom distinct viral load kinetics are shown. This report suggests that viral load kinetics of SARS-CoV-2 may be different from that of previously reported other coronavirus infections such as SARS-CoV.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pneumonia, Viral , Viral Load , Adult , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/virology , Female , Humans , Kinetics , Male , Middle Aged , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index
18.
Emerg Microbes Infect ; 10(1): 152-160, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1012800

ABSTRACT

Cases of laboratory-confirmed SARS-CoV-2 reinfection have been reported in a number of countries. Further, the level of natural immunity induced by SARS-CoV-2 infection is not fully clear, nor is it clear if a primary infection is protective against reinfection. To investigate the potential association between serum antibody titres and reinfection of SARS-CoV-2, ferrets with different levels of NAb titres after primary SARS-CoV-2 infection were subjected to reinfection with a heterologous SARS-CoV-2 strain. All heterologous SARS-CoV-2 reinfected ferrets showed active virus replication in the upper respiratory and gastro-intestinal tracts. However, the high NAb titre group showed attenuated viral replication and rapid viral clearance. In addition, direct-contact transmission was observed only from reinfected ferrets with low NAb titres (<20), and not from other groups. Further, lung histopathology demonstrated the presence of limited inflammatory regions in the high NAb titre groups compared with control and low NAb groups. This study demonstrates a close correlation between a low NAb titre and SARS-CoV-2 reinfection in a recovered ferret reinfection model.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/transmission , Reinfection/immunology , SARS-CoV-2/immunology , Animals , COVID-19/virology , Chlorocebus aethiops , Ferrets , Vero Cells
19.
Sci Rep ; 10(1): 22418, 2020 12 29.
Article in English | MEDLINE | ID: covidwho-997951

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over forty million patients worldwide. Although most coronavirus disease 2019 (COVID-19) patients have a good prognosis, some develop severe illness. Markers that define disease severity or predict clinical outcome need to be urgently developed as the mortality rate in critical cases is approximately 61.5%. In the present study, we performed in-depth proteome profiling of undepleted plasma from eight COVID-19 patients. Quantitative proteomic analysis using the BoxCar method revealed that 91 out of 1222 quantified proteins were differentially expressed depending on the severity of COVID-19. Importantly, we found 76 proteins, previously not reported, which could be novel prognostic biomarker candidates. Our plasma proteome signatures captured the host response to SARS-CoV-2 infection, thereby highlighting the role of neutrophil activation, complement activation, platelet function, and T cell suppression as well as proinflammatory factors upstream and downstream of interleukin-6, interleukin-1B, and tumor necrosis factor. Consequently, this study supports the development of blood biomarkers and potential therapeutic targets to aid clinical decision-making and subsequently improve prognosis of COVID-19.


Subject(s)
Blood Proteins/analysis , COVID-19/blood , Severity of Illness Index , Adult , Aged , Biomarkers/blood , COVID-19/mortality , COVID-19/pathology , Chromatography, High Pressure Liquid , Complement Activation/immunology , Cytokines/blood , Gene Expression Profiling , Humans , Mass Spectrometry , Middle Aged , Neutrophil Activation/immunology , Platelet Activation/immunology , Proteome/metabolism , SARS-CoV-2 , Suppressor Factors, Immunologic/blood , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL